
1

Exact GPS Simulation and Optimal Fair Scheduling with
Logarithmic Complexity

Paolo Valente
Dipartimento di Ingegneria dell’Informazione

Università degli Studi Di Modena - Italy
paolo.valente@unimore.it

Abstract— Generalized Processor Sharing (GPS) is a fluid
scheduling policy providing perfect fairness over both constant-
rate and variable-rate links. The minimum deviation (lead/lag) with
respect to the GPS service achievable by a packet scheduler is one
maximum packet size. To the best of our knowledge, the only packet
scheduler guaranteeing the minimum deviation is Worst-case Fair
Weighted Fair Queueing (WF2Q), which requires on-line GPS sim-
ulation. Existing algorithms to perform GPS simulation haveO(N)
worst-case computational complexity per packet transmission (N
being the number of competing flows). Hence WF2Q has been
charged for O(N) complexity too. However it has been proven
that the lower bound complexity to guaranteeO(1) deviation is
Ω(log N), yet a scheduler achieving such a result has remained
elusive so far.

In this paper we present L-GPS, an algorithm that performs
exact GPS simulation with O(log N) worst-case complexity and
small constants. As such it improves the complexity of all the
packet schedulers based on GPS simulation. We also present L-
WF2Q, an implementation of WF2Q based on L-GPS. L-WF2Q has
O(log N) complexity with small constants, and, since it achieves
the minimum possible deviation, it does match the aforementioned
complexity lower bound. Furthermore, both L-GPS and L-WF2Q
comply with constant-rate as well as variable-rate links. We assess
the effectiveness of both algorithms by simulating real-world sce-
narios.

Index Terms— Computational Complexity, Data Structures,
Packet Scheduling, Quality of Service.

I. I NTRODUCTION

Given a set ofN flows, defined in whatever meaningful way
and sharing a common transmission link, packet scheduling
algorithms play a critical role in providing each flow with a
predictable service.

An important reference system in packet scheduling is the
Generalized Processor Sharing (GPS) server [1]. Provided that
each flow has a weight assigned to it, such a system serves
all flows simultaneously, delivering each one a service rate
proportional to its weight. The GPS service discipline is not
realistic: a practical system can serve a limited number of
packets at a time (in this paper we consider only systems that
can serve at most one packet at a time). Nevertheless, thanks
to its perfectly fair allocation, the GPS service discipline is
used as a reference model for evaluating the properties of more
practical schedulers.

It is easy to prove that the fairness of a packet scheduler
depends on its maximum per-flowdeviation(difference) with
respect to the amount of service delivered by the GPS server.In
particular,O(N) deviation impliesO(N) (un)fairness, whereas
O(1) deviation guaranteesO(1) (un)fairness (N can be quite
large, as shown in [21] and discussed in more detail below).

Furthermore, as shown in [3] and [5], a scheduler withO(N)
deviation with respect to the GPS service may introducebursts
a burstingperiod, during which up toO(N) packets belonging
to the same flow are served back-to-back, can be followed by
a silenceperiod – with length equal to the preceding bursting
period – during which no packet of the the flow is served.

Since packet transmission is atomic, no packet scheduling
algorithm can avoid aminimum deviation, equal to one max-
imum size packet, between the amount of service provided
to each flow by the real system and the amount of service
provided to the same flow by the GPS server. We say that
the service delivered by a real system (thanks to the adopted
scheduling policy) isoptimum, if the discrepancy with respect
to the GPS service never exceeds theminimumdeviation. It
has been proven that thelower bound complexity to guarantee
O(1) deviation with respect to the GPS service isΩ(log N)
[13].

A very accurate packet scheduling algorithm, called Worst-
case Fair Weighted Fair Queueing (WF2Q) [3] and based on the
on-line simulation of a GPS server, does achieve the optimum
service. Theclassicalalgorithm for simulating the GPS server
has been proposed more than a decade ago together with the
GPS service discipline itself [1]. It has been proven to require
– in the worst-case – the processing ofO(N) events in a single
packet transmission time [9]. For this reason WF2Q has been
charged forO(N) complexity too [9], [6], [5].

Another important measure of the cost of the GPS simulation
is the number of steps performed for each arriving packet, the
per packetcomplexity. This complexity has been systematically
studied for the first time in [15]. The authors showed that its
lower bound isΩ(log N), and that an algorithm matching this
bound was already proposed in [14]. But they also clarified
that: 1) if aheap-type priority queue is used to implement this
algorithm, the worst-case complexity per packet transmission
time is still Ω(N), 2) this lower bound is due to an unavoidable
problem referred to as themandatory lazy evaluationproblem
(see Subsec. III-A). In this paper we show how, despite this
problem,O(log N) complexity per packet transmission time
can be achieved by using ahierarchical tree-type data structure.

The computational complexity of a packet scheduler is a
critical issue, because links transmit packets at increasingly
higher speeds, and the number of competing flows can be quite
high. As reported in a recent work [21], tens of thousands flows
can bein progressat the same time through an Internet link (in
[21] a flow is denoted as in progress during any time interval
in which the inter-arrival time of its packets is lower than 20
seconds).

2

However, in the same paper it is shown that the number of
simultaneously backlogged flows at any time instant is in the
order of a few hundreds under stable load conditions. With such
figures, linear complexity may constitute a significant barrier
to on-line scheduling in high speed applications [20], [9],[6],
[5], [10], [11]. On the contrary, depending on the constants,
logarithmic complexity per packet transmission time may be
affordable.

Many scheduling algorithms withO(log N) complexity have
been proposed, such as Self Clocked Fair Queueing (SCFQ)
[9], Frame Based Fair Queueing (FFQ) [6] and Start Time Fair
Queueing [10]. They are based on anapproximatesimulation of
the GPS server, trading accuracy for complexity. Unfortunately,
all them exhibit O(N) deviation with respect to the GPS
service.

A more accurate algorithm, called Worst-case Fair Weighted
Fair Queueing Plus (WF2Q+) [5], has been proposed to re-
duce the implementation complexity of WF2Q while retaining
several of its properties (a similar, but not identical, algorithm
has been proposed in [7]). WF2Q+ hasO(1) deviation from
the minimumamount of service guaranteed to each flow by
the GPS server. However, also WF2Q+ may exhibit O(N)
deviation from theactual service delivered by the GPS server
when some flows are idle [22].

Finally, several schedulers with very low complexity (ranging
from O(1) to O(log log N)) have been proposed [11], [8], [12],
[19], but all of them exhibitO(N) or, worse yet, unbounded
deviation with respect to the GPS service. In the end, even
though thelower bound complexity to guarantee the optimum
service has been proven to beΩ(log N) [13], the problem of
providingO(1) deviation from a perfectly fair service with sub-
linear complexity was still open.

Contributions of this paper

In this paper we present Logarithmic-GPS (L-GPS), an
algorithm for simulating a GPS server, based on a specially
augmented balanced binary tree. Such a tree allows the state
of the simulated GPS server to be computed withO(log N)
complexity at any time instant. The tree must be updatedonly
at each packet arrival, and atO(log N) cost.

Actually, the number of operations needed to compute the
state of the GPS server and to update the tree is proportionalto
the depth of the tree itself, which in its turn can be implemented
by augmenting, in the sense defined in [17] (Chapter 14), an
underlying balanced binary tree. In this paper we show two
possible implementations, based, respectively, on Patricia Trees
[16], which guaranteeO(log N) averagedepth, and on Red-
black Trees [17], which guaranteeO(log N) worst-casedepth.
Especially, although providing a weaker theoretical complexity
bound, Patricia Trees have a much simpler structure and allow
L-GPS to be implemented in a more efficient way than Red-
black Trees. As we show through simulations, they achieve
good performance in practical cases. In the end, depending on
the specific balanced tree used, L-GPS enables the GPS service
to be simulated atO(log N) – statistical or deterministic – cost
per packet transmission/arrival.

We also present Logarithmic-WF2Q (L-WF2Q), an imple-
mentation of WF2Q based on L-GPS, withO(log N) complex-

ity and small constants. To the best of our knowledge, L-WF2Q
is the first scheduler withO(log N) complexity achieving
O(1) deviation (actually, the minimum possible deviation) with
respect to the GPS service.

Both L-GPS and L-WF2Q comply with constant-rate as well
as variable-rate links. As an example of the second category,
consider shared-media wired or wireless links. Typically,only
the MAC protocol is concerned with collisions and packet
losses, and it hides these details to layers 3 and above. So
the latter just ’see’ a time-varying capacity link.

L-GPS and L-WF2Q reduce theupperbound complexity for
simulating a GPS server and for providing the optimum service,
both fromO(N) to O(log N). Moreover, sinceΩ(log N) is the
lower bound complexity to guaranteeO(1) deviation from the
GPS service [13], L-WF2Q achieves theoptimumservice with
optimumcomplexity.

Part of the material presented in this paper appeared for the
first time in a former work [22].

Organization of this paper

This paper is organized as follows. In Sec. II we provide an
overview of GPS and WF2Q. In Sec. III we make a survey
of related work, focusing on the existing linear complexity
algorithms for simulating the GPS server, and on the WF2Q+
packet scheduler. In Sec. IV we present our main result, the
L-GPS algorithm, whereas in Sec. V we discuss how it can be
implemented using two classes of balanced trees. In Sec. VI
we describe L-WF2Q. In Sec. VII we show through simulations
how the actual complexity of L-GPS and L-WF2Q compares
to the worst-case bound.

II. GPSAND WF2Q

Consider a system in whichN flows (defined in whatever
meaningful way) share a common transmission link with atime-
varying capacity (rate) ofC(t) bits/sec. We defineW (t) ≡
∫ t

0
C(τ) · dτ as the total amount of service provided by the

system during[0, t]. We say that a packethas arrived in the
system when its last bit has arrived in the system, we call
packetarrival time the time at which this happens. Similarly,
we say that a packetdepartsfrom the system when its last bit
is transmitted by the system, and we call packetfinish timethe
time at which this happens. We define asbackloggedevery flow
owning packets not yet (completely) transmitted. Each flow has
a packet FIFO queue associated with it, holding the flow’s own
backlog.

We definebusy perioda maximal interval of time during
which the system is never idle. Finally, most of the notations
used in this paper are summarized in Table I.

Each flowi has a positive numberφi assigned to it, namely
its weight. A GPS server [1] is an ideal system that serves
all backlogged flows simultaneously, providing each of thema
shareof the output link capacity (i.e. ratio between the service
rate provided to the flow and the link capacity), proportional
to its weight. In formulas:

dWi(t) =
φi

∑

j∈B(t) φj
·dW (t) =

φi

Φ(t)
·dW (t) ∀i ∈ B(t) (1)

3

Lmax Maximum packet length
φi Weight of thei-th flow

Φ(t) ≡
∑

j∈B(t) φj

Sum of the weights of the flows back-
logged at timet

Si(t), Fi(t), Ui(t) Virtual start/finish/unbacking time of
the i-th flow at time t

Quantities related to a generic node of theUtree:
tmin , tmax Extremes of the time interval

[tmin, tmax] represented by the
node

Umax Umax ≡ V (tmax)

∆Φ ∆Φ ≡ Φ(t+max) − Φ(t−min)
∆W Correction factor to use in (5), com-

puted as in (6)

TABLE I
NOTATIONS USED IN THIS PAPER.

wheredW (t) = C(t)·dt is the total amount of service provided
by the system in[t, t + dt] (C(t) is the link capacity at time
t), dWi(t) is the amount of service received by thei-th flow
in [t, t + dt], B(t) is the set of the flows backlogged at time
t, Φ(t) ≡

∑

j∈B(t) φj is the sum of the weights of the flows
backlogged at timet.

Given the packet arrival pattern and the output link capacity
of a real system, WF2Q [3] is based on the on-line simulation of
the correspondingGPS server, i.e. a GPS server with the same
arrival pattern and the same capacity of the real system. We
say that a packet iseligible if it has already started service in
the corresponding GPS server. WF2Q implements the following
scheduling policy: at each time instantt in which the link is
ready to transmit the next packet, choose, among all the eligible
packets, the next one that finishes in the corresponding GPS
server, if no packet arrives after timet.

A practical way for implementing this policy in case of
variable-rate links is based on timestamping packets with the
values assumed by the following function, called (GPS) system
virtual time [5]:

V (t) ≡

∫ t

0

1

Φ(τ)
· dW (τ) (2)

From (1), we have thatdV (t) = dWi(t)
φi

∀i ∈ B(t), i.e. the
variation of the system virtual time during[t, t+dt] is equal to
thenormalizedamount of service received by each backlogged
flow during the same time interval. Each packetpk

i (k − th

packet ofi − th flow, in order of arrival times) is associated
with a packetvirtual start timeSk

i and a packetvirtual finish
time F k

i . Sk
i is the value assumed by the system virtual time

when the corresponding GPS server starts servicingpk
i , and

F k
i is the value assumed by the system virtual time when the

corresponding GPS server finishes servicingpk
i . Supposepk

i

arrives at timeak
i and its length is equal toLk

i , it is easy to
prove that its timestamps can be computed as follows [5]:

Sk
i = max(V (ak

i), F k−1
i)

F k
i = Sk

i +
Lk

i

φi

(3)

At every time, only the packets at the head of the queues of
the backlogged flows can be chosen for transmission, hence, as
suggested in [5], it is possible to schedule packets on a per-flow
basis, and to maintain only a pair of timestamps for each flowi.

Capacity

Capacity
Link

Link

39

GPS
Service

WF2Q
Service

4920 3323
21

t

...C(t)=1

38
35 403010 20

39

20 System

21.5

11

C(t)=1

Virtual time

39
38

11 35

11

17

21

23

...

39
38

352311 40

10

B
t

t

t

V(t)

Packet arrivals AFlow Weight

C

3 2

2 1

1 1

D

2

1
1p

2
2p

1
3p

1p

Fig. 1. Evolution of the system virtual time.

They are called, respectively, flowi virtual start timeSi(t) and
flow i virtual finish timeFi(t), and correspond to the virtual
start and finish time of the packet at the head of the queue of
flow i at time t. Since the system virtual time is an increasing
function of the time, it is easy to verify that the packet at the
head of thei − th flow is eligible at timet if and only if its
virtual start time is no greater thanV (t). Accordingly, we say
that a flowi is eligible at timet if and only if Si(t) ≤ V (t).

We can now define WF2Q as follows:
Definition 1: Each time the link is ready to transmit the next

packet, WF2Q picks the packet at the head of the queue of the
eligible flow with the smallest virtual finish time.

The maximumper-flow deviation with respect to the cor-
responding GPS server guaranteed by WF2Q is equal to the
maximum packet lengthLmax [3] (WF2Q delivers theoptimum
service). The computational complexity of WF2Q is due to two
major tasks: maintaining the set of the eligible flows sortedby
virtual finish times, and computing the value of the system
virtual time. As shown in [4] and briefly reported in Sec. VI, it
is possible to maintain the eligible flows sorted by virtual finish
times atO(log N) cost per packet arrival or departure. With
regard to the latter task, existing algorithms with linear com-
plexity for tracking the virtual time are presented in Sec. III.
To describe both these algorithms and L-GPS we refer to the
following example and definitions.

Example 1:Consider a link with a constant capacityC of
1 byte per time unit, shared by three packet flows. Flows 1
and 2 have weight 1, while flow 3 has weight 2. Fig. 1.A
depicts a possible packet arrival pattern. Each arriving packet
is depicted as a rectangle: the projection on thex axis of its
left corner represents the packet arrival time, while the length
of the base represents the time needed to serve the packet at
full link capacity. Fig. 1.B shows the service delivered by the

4

corresponding GPS server, Fig. 1.C shows the evolution of the
system virtual time, Fig. 1.D shows the service provided by
WF2Q.

According to (2), at all timest, theslopeof V (t) againstW (t)
is equal to 1

Φ(t) . HenceV (t) is a piecewise linear function of the
total amount of serviceW (t) delivered by the system. In case
of constant-rate links it is a piecewise linear function of the time
too (Fig. 1.C). Hereafter, we use the termslopeas a short for
the slope ofV (t) againstW (t). WheneverB(t) changes,Φ(t)
and hence the slope ofV (t) changes, constituting abreakpoint
in its piecewise linear form (with respect toW (t)). We define
break instantevery time instant̄t at which the slope changes
(e.g. time 23 in Fig. 1.C), andbreak valuethe value assumed
by the system virtual time at timēt.

We define the tuple< V (t), Φ(t+), W (t) > as thestateof
the GPS server corresponding to the time instantt, and we say
computing the stateof the GPS server as a short for computing
all the values of this tuple. Finally, given a generic functionf of
the time, we use the compact notationsf(t−) = limx→t− f(x)
andf(t+) = limx→t+ f(x).

III. R ELATED WORK

The two main issues related to the GPS service are how
to efficiently simulate it, and how to approximate it on a
real system. With regard to the former issue, we present in
Subsec. III-A the only two existing algorithms (according to the
literature and excluding L-GPS) for tracking the system virtual
time. With regard to the latter issue, in Subsec. III-B we focus
on WF2Q+, the only low complexity scheduler –O(log N)
per packet transmission – achieving the same minimum service
guarantees as WF2Q.

A. Existing algorithms for tracking the virtual time

In a work-conserving scheduler, such as WFQ or WF2Q,
busy periods in the real system and in the corresponding
GPS server coincide. Moreover, since packets arrive and are
timestamped only during (or at the beginning of) busy periods,
there is no need to compute the virtual time outside busy
periods. Hence in what follows we consider the problem of
computingV (tnew) at a generic time instanttnew belonging to
a busy period for the GPS server. However, according to (2), the
value of the virtual time is constant between two consecutive
busy periods. By exploiting this property, all the algorithms
described in this paper can be easily extended to compute the
virtual time also at a time instant not belonging to a busy period.

Definetl ≤ tnew as the largest break instant no greater than
tnew . Φ(t+l) > 0 and the slope ofV (t) is constant and equal
to 1

Φ(t+
l

)
during (tl, tnew]. Hence, according to (2)

V (tnew) = V (tl) +
W (tnew) − W (tl)

Φ(t+l)
(4)

As a consequence, if the state< V (tl), Φ(t+l), W (tl) > of
the GPS server corresponding to timetl is known, then (4) can
be immediately applied to computeV (tnew).

The classical algorithm [1] for computing the virtual time
can be defined as follows: store the state of the GPS server

in three (scalar)state variables, and update them to<
V (tj), Φ(t+j), W (tj) > at eachbreak instanttj .

Hence, at any time instantt, the state variables contain the
state of the GPS server corresponding to the largest break
instant no greater thant. For this reason, (4) can be immediately
applied to computeV (tnew) at any timetnew. Furthermore,
the state variables themselves can be updated upon each break
instant by exploiting (4).

Break instant frequency depends on the frequency of transi-
tion of flows in and out of the setB(t). Since flows are served
simultaneously, packet finish times in the GPS server can be
arbitrarily slightly skewed. In the worst case,O(N) finish times
may fall in anarbitrarily short time interval, and hence in the
smallest packet transmission time. It is worth noting that this
may happen even if the packet arrival rate is bounded toO(1)
packets per time unit. For example, in Fig. 1.A packet arrival
times are spaced by time intervals longer than the minimum
packet service time (10 time units). Nevertheless, the slope of
the system virtual time changesO(N) times during the service
of p1

3 (Fig. 1.D). As a conclusion, the worst-case complexity
of the classical algorithm isO(N) per packet transmission.

In [15] it is shown how an early algorithm proposed in [14]
can be used to realize aqueue-based variantof the classical
algorithm. This variant basically allows the updating of the state
variable to be postponed. For ease of exposition we discuss here
a simplified version of the algorithm, which we callsequential
algorithmand which has a computational complexity no higher
than the one of the original algorithm. Suppose that at time
tnew the state variables contain the tuple< V (told), Φ(t+old),
W (told) > corresponding to a time instanttold ≤ tl, whereas
a special queue holds one element for each break instant in
(told, tl]. Each element contains information which enables the
state of the GPS server corresponding to the represented break
instant to be computed atO(1) cost, provided that the state of
the GPS server upon the immediately preceding break instant
is known. V (tnew) is computed as follows. First, the states
of the GPS server corresponding to all the break instants in
(told, tl] are computed bysequentiallyvisiting each element
of the queue. Once the state< V (tl), Φ(t+l), W (tl) > is
computed, (4) is used to compute the state of the GPS server at
time tnew . Finally, the latter is assigned to the state variables.

The sequential algorithm has an inherently linear worst-
case complexity. According to what is previously stated,O(N)
break instants may in general fall in(told, tnew), thus causing
the algorithm to exhibitO(N) worst-case complexity per
virtual time computation. The only possibility for computing
V (tnew) at timetnew in less thanO(N) steps would be know-
ing, at time tnew , the state of the GPS server corresponding
to a break instanttf ≤ tl such that less thanO(N) break
instants are included in(tf , tl]. One way to guarantee that
the state corresponding totf is known at timetnew would
be computing the state of the GPS server upon each break
instant (which would implytf = tl). But this would haveO(N)
cost. On the contrary, it is easy to prove that, to guarantee that
the state corresponding totf is known at timetnew without
incurring O(N) complexity, it is necessary be able to pre-
compute theexpectedstates of the GPS server corresponding
to futureexpectedbreak instants. The sequential algorithm can

5

be easily extended to pre-computeexpectedstates as well.
Unfortunately, the expected state of the GPS server corre-

sponding to an expected break instanttf cannot be finalized
before time tf , because every packetpj

i arriving at a time
instant ta < tf may change the evolution of the virtual time
during (ta, tf]. For example, flowi may become backlogged,
thus causing the slope to change at timeta (detailed examples
of how the expected evolution changes in consequence of
packet arrivals are reported in Subsec. IV-A). The authors of
[15] refer to this issue as the “mandatory lazy evaluation”
problem. SinceO(N) expected break instants may fall in
(ta, tf] and the sequential algorithm performs one step per
break instant, maintaining the expected state corresponding to
tf would haveO(N) cost per packet arrival.

B. WF2Q+

WF2Q+ [5] implements the same packet timestamping (3)
and selection policy (Def. 1) of WF2Q, but it uses a simpler sys-
tem virtual time function. WF2Q+ has been defined assuming
that flow weights arenormalizedso that

∑N
i=1 φi = 1 holds.

Under this hypothesis and assuming also that some admission
policy is used, we define the weightφi of a flow i also as its
reserved fractionof the link capacity. We define asreserved
serviceof a flow during a given time interval, the amount of
service that the flow should receive during the time interval,
according to its reserved fraction (for simplicity we neglect the
case where the weight of a flow changes over time). It has been
shown in [5] that, thanks to the properties of its system virtual
time function, WF2Q+ (as WF2Q) guarantees to each admitted
flow, and over any time interval, the minimum possible worst-
case lag (less than2·Lmax) with respect to its reserved service.

According to (1), the GPS server provides each flow with
at least its reserved service over any time interval. Especially,
a backlogged flow may receive much more than its reserved
service during any time interval in which not all the flows are
backlogged. In [22] it is shown that, due to this fact, WF2Q+
may exhibitO(N) deviation with respect to the GPS service
if not all the admitted flows are continuously backlogged.

The following considerations can be made on the actual
impact of the above shortcoming. Suppose that an application
reserves the desired capacity along the nodes traversed by its
flows, and that it relies only on the reserved service. In thiscase,
anO(1) lag with respect to the reserved service constitutes the
most important guarantee for the application, and anO(N)
deviation with respect to the GPS service should cause no
relevant consequences.

Conversely, consider a reservation-free scenario, as e.g.the
one envisaged in [21]. First, perfect fairness is a desirable ser-
vice distribution for best-effort traffic. Second,O(N) deviation
with respect to the GPS service results in additional burstiness,
i.e. service rate oscillations, introduced by the scheduler. To
the best of this author’s knowledge, there is no experimental
work either showing that this is not an issue, or showing to
which extent adaptive (such as video streaming) and feedback-
based (such as tcp) applications may benefit from the smoothest
possible service.

Finally, as far as the computational cost is concerned, the
main difference between WF2Q and WF2Q+ is that the latter

is based on a simpler system virtual time function. However,
as WF2Q, WF2Q+ must maintain the set of the eligible flows
sorted by virtual finish times. To the literature, the lowestcost
(O(log N)) solution [4] to perform this task is provably more
expensive than tracking the system virtual time of WF2Q+
(more details are provided in Sec. VI). In the end the computa-
tional cost of (exact implementations of) WF2Q and WF2Q+ is
comparable. In contrast, implementations of WF2Q+ with O(1)
overall complexity have been devised [19] using approximate
timestamps.

IV. L-GPS

In this section we concentrate on the GPS simulation effort,
and we consider the following pair of systems: a real system
and thecorrespondingGPS server (the GPS server for short).
Hereafter we use the term virtual time assuming we are
referring to the GPS system virtual time. We say that a flow
is backlogged/idle if it is backlogged/idle in the GPS server,
independently of its state in the real system. We define astotal
backlogat time t the sum of the backlogs of all the flows in
the GPS server at timet, and we callexpected clearing timeat
time t the time instanttC ≥ t in which the total backlog will
be cleared if no packet arrives after timet.

In the rest of this section, we always refer to the problem of
computingV (tnew) at a generic time instanttnew belonging to
a busy period for the GPS server (see the note at the beginning
of Subsec. III-A), provided that the total amount of service
delivered by the system is known upon each packet arrival and
upon any time instant at which the value of the virtual time is
to be computed. We show that L-GPS solves this problem at
O(log N) cost, by using anad hocaugmented balanced binary
tree, calledUtree, that must be updated atO(log N) cost upon
each packet arrival.

The approach used to computeV (tnew) is similar to the one
used in the sequential algorithm [15] (Subsec. III-A). As inthe
sequential algorithm, when the computation ofV (tnew) begins,
the state of the GPS server corresponding to a time instant
told < tnew is available (as shown in Subsec. IV-C, there can
be up toO(N) break instants betweentold and tnew). Then
L-GPS uses the information stored in theUtree to reconstruct
the evolution of the virtual time during(told, tnew].

Each node of theUtree contains aggregated information on a
time interval ranging between two break instants. In general the
extremes of the time interval are not consecutive break instants;
on the contrary, up toO(N) break instants can be included in
it. The information stored in the nodes is organized in a hier-
archical fashion: two sibling nodes contain information ontwo
adjacent intervals, and their parent node contains aggregated
information on the union of the two intervals. Whereas in the
sequential algorithm the break instants included in(told, tnew]
mustall be sequentially processed, the aggregated information
stored in theUtree allows L-GPS to process eventsin groups
during a special visit from the root to a leaf of theUtree. Up
to O(N) events are processed atO(1) cost each time a level
of theUtree is descended. In the end, the maximum number of
steps performed is in the order of the depth of theUtree.

Finally, the main idea behind the construction of theUtree

is pre-computingand storing information on theexpected

6

evolution of the virtual time. As shown in detail in the next
subsection, the expected evolution of the virtual time changes
upon each packet arrival. The information stored in theUtree

is coded in such a way that it can be updated atO(log N) cost
after each packet arrival.

As previously said, the nodes of theUtree contain informa-
tion on time intervals whose extremes are break instants. We
say that a point(t̄, V (t̄)), with t̄ > t, is anexpectedbreakpoint
at time t if it will constitute a breakpoint if no packet arrives
after time t; furthermore, we say that̄t is an expectedbreak
instant at timet, and thatV (t̄) is an expectedbreak value at
time t.

Expected breakpoints are obviously dueonly to flows becom-
ing idle. We define, for each flowi, theflow virtual unbacking
time Ui(t) as the virtual finish time of the last packet of the
i-th flow arrived up to timet. The expected break values at
time t correspond to the virtual unbacking times of the flows
backlogged at timet. Through (3), the virtual unbacking time
of each flow can be easily computed/updated upon the arrival
of each of its packets. It is important to note that from the
same formula it follows that the virtual unbacking time of a
flow does not changein consequence of the arrival of packets
belonging to other flows.

In the next subsection we show in detail the data structure
used by L-GPS, whereas in the successive two subsections we
show, respectively, how the virtual time is computed using this
data structure and how the data structure itself is updated.

A. The shape data structure

L-GPS stores information on the expected evolution of the
virtual time in the following data structure:

Definition 2: Shape data structure. Union of a base tuple
containing, at any time instantt, the state of the GPS server
corresponding to a time instanttold ≤ t, and a balanced binary
tree, calledUtree and containing one leaf for each (actual
or expected) break instant included in(told, tC], where tC
is the expected clearing time at timet. Each node of the
Utree represents a time interval[tmin, tmax], wheretmin and
tmax are, respectively, the smallest and the largest time instant
represented in the subtree rooted at the node (leaves represent
time intervals of length0). Furthermore:

1) the time interval represented by the left child of a node
precedes the time interval represented by the right child;

2) the information stored in each node –all evaluated
assuming that no packet arrives after timet – are: the (actual
or expected) break valueUmax = V (tmax), the difference
∆Φ = Φ(t+max) − Φ(t−min), and a correction factor ∆W

characterized by the following property: given any time instant
t1 ≤ tmin such that there is no break instant in[t1, tmin), we
have

W (t1, tmax) = Φ(t+1) · (Umax − V (t1)) − ∆W (5)

where W (t1, tmax) is the expected amount of total service
delivered by the system during[t1, tmax]. For a leaf,tmin =
tmax = tj , Umax = V (tj), ∆Φ = Φ(t+j)−Φ(t−j), and∆W is
obviously0.

29t =11
30

~

t

t

~

11

20

21

20

17

t =0

20

~

35

a =11

t

a =23

20

t =39

21

22

~

38t =23 40

R2

old

old

∆W

∆W
∆Φ

(21−20)*1=1

maxU 21

−1−1=−2

∆W ∆W

∆W

Umax

UmaxUmax

∆W

Umax 21

0

∆Φ −1

∆W

Umax 20

0

∆Φ −1

)W(
oldt

)V(
oldt

Φ()old

+

∆W
∆Φ

old

)W(
oldt

)V(
oldt

Φ()old

+

11

2

11

∆W

Umax

L2
20

0

∆Φ −1

)W(
oldt

)V(
oldt

Φ()old

+

0

1

0

Utree:

Base tuple:

1

2

1

3

new

21

0

∆Φ −1

22

0

∆Φ −2

4

17

23

1+0+(22−21)*2=3

22maxU

−2−2=−4

t

V(t)

old

L2

R2

R1

L2

t

V(t)

old

C.1 C.2

B.1 B.2

t

V(t)

old

P0

A.1 A.2

L2 R2

L1

L1

L1

(21−20)*1=1

maxU 21

−1−1=−2∆Φ

L2 R2

L1 R1

P0

L2

20

0

∆Φ −1

t

t

t

Fig. 2. Expected virtual evolution and shape data structureafter
the arrival of each of the first three packets in Example 1.

Neglect for a moment the correction factor∆W . In what
follows we denote asf j

i the finish time of the packetpj
i in

the GPS server. Consider the upper part of Fig. 2.A.1: with
reference to Example 1 (where∀t C(t) = C = 1 byte/sec),
it shows theexpectedevolution ofV (t) after the arrival ofp1

1

(L1
1 = 20 bytes,φ1 = 1) at time 0, assuming that no further

packet arrives. Fig. 2.A.2 shows the corresponding shape data
structure. For the base tuple, we have thatΦ(0+) = φ1 = 1,
W (0) = 0, V (0) = 0. Flow 1 gets the entire capacity,
and there is just one expected break instant, corresponding
to the expected clearing timef1

1 =
L1

1

C = 20
1 . From (3), the

corresponding break value isU1(0
+) = F 1

1 =
L1

1

φ1
= 20. On

this breakpoint,Φ(t) varies by a quantity∆Φ = −φ1 = −1.
Hence theUtree consists of just the leafL2, containing the
above information (Fig. 2.A.2). The bottom part of Fig. 2.A.1
shows the break instant represented byL2.

Fig. 2.A.1 also shows the time instant11 at which a new
packet,p1

2, arrives (L1
2 = 10 bytes, φ2 = 1). The expected

evolution ofV (t) after the arrival ofp1
2 is shown in the upper

part of Fig. 2.B.1. We have thatΦ(11+) = φ1+φ2 = 2, hence
the slope ofV (t) halves at time11. Since both flows1 and
2 have the same weight, they start to get half of the capacity
each.11 out of 20 bytes ofp1

1 have been already served at time
11, hence the expected break instantf1

1 moves from time20 to
time11+ 20−11

C/2 = 29 (of course, the corresponding break value
F 1

1 is unchanged). During[11, 29], (29− 11) · C
2 = 9 bytes of

7

W(t , t)

W(t)W(t)W(t)

V(t)

U

...

W(t , t)

 U − V(t))

~

min

max1

(t)Φ 1

+

max

Φ(t)1
+

1

~~

max1

~

W(t)
.(max 1

1

−∆ min

max

V(t)

Fig. 3. The correction factor is equal to the difference between the
value thatW (t1, tmax) would have if the slope ofV (t) was con-
stant and equal to 1

Φ(t+
1

)
during (t1, t

max
], and the actual/expected

value of W (t1, tmax) according to the actual/expected evolution
of V (t).

p1
2 are served. Hence, after the completion ofp1

1, 10 − 9 = 1
byte ofp1

2 is still to be served, and flow2 starts getting all the
capacity. As a consequence, there is one more expected break
instantf1

2 = 29+ 1
C = 30, whose corresponding break value is

equal toU2(11+) = F 1
2 = V (11) + 10

1 = 21 (see (3)). Finally,
Φ(t) varies by a quantity∆Φ = −φ2 = −1 on f1

2 .
Fig. 2.B.2 shows the corresponding shape data structure,

assuming that the base tuple contains the state of the GPS server
corresponding to time11 (as shown in Subsec. IV-C, the base
tuple may also happen to contain the state corresponding to
a lower time instant than the current time, in consequence of
the adoptedlazy updating algorithm). The time intervals rep-
resented by the nodes of theUtree (continuous lines or points)
are shown in the bottom part of Fig. 2.B.1. The information
on the new expected break instantf1

2 = 30 is stored in the
leaf R2. The leafL2, representing the other break instantf1

1 ,
obviously containsthe same informationstored in the only node
of the Utree in Fig. 2.A.2. The rootL1 of the Utree contains
aggregated information on the time interval ranging between
the break instants represented by the two leavesL2 and R2;
especially, it contains the break valueUmax = F 1

2 = 21 and
the cumulative variation∆Φ = −φ1 − φ2 = −2 of the weight
sum.

Finally, the upper part of Fig. 2.C.1 shows the expected
evolution after the arrival of packetp1

3 at time 23 (L1
3 = 10

bytes, φ3 = 2). It is easy to show that the previous two
expected break instantsf1

1 andf1
2 move, respectively, from29

to 35, and from30 to 38, and that there is a new expected
break instantf1

3 = 40. The corresponding break value is
U3(23+) = F 1

3 = V (23) +
L1

3

φ3
= 17 + 5 = 22. Fig. 2.C.2 and

the bottom part of Fig. 2.C.1 show the corresponding shape data
structure and the represented time intervals, assuming that the
base tuple contains the state of the GPS server corresponding
to time 23.

Consider now the correction factor∆W . Its purpose is
allowing L-GPS to efficiently compute the value assumed by
W (t) upon break instants (as shown in the next subsection,
this is crucial to reconstructing the evolution of the virtual
time during(told, tnew]). A simple solution to immediately get
these values while visiting theUtree would have been explicitly
storing the valueW (tmax) in each node representing the time
interval [tmin, tmax] (recall thattmax is a break instant). In

contrast, according to (5),∆W needs to be combined with
additional information to compute the amount of work done
by the system during the time interval[t1, tmax], and then this
value must be summed toW (t1) to getW (tmax). The reason
for storing the correction factor∆W instead of W (tmax)
in each node is the following. Before timetmax, W (tmax)
is actually an expected value: in general it changes after a
packet arrival beforetmax (recall the mandatory lazy evaluation
problem). Updating the fieldW (tmax) in all the (involved)
nodes can be easily proven to haveΩ(N) cost. On the contrary,
as shown below, the field∆W can be updated atO(log N) cost.
In the rest of this subsection we report just the properties of
the correction factor, and in general of the shape data structure,
whereas we show how these properties are exploited in the next
two subsections.

A graphical representation of Eq. (5) is shown in Fig. 3. For
each node,∆W depends only on the information stored in the
subtree rooted at the node, and it isindependent ofΦ(t+1), as
stated by the following theorem.

Theorem 1:For any internal nodeP of a Utree

∆WP = ∆WL + ∆WR − ∆ΦL · (UR
max − UL

max) (6)

whereL is the left child of nodeP , andR is the right one.
The proof of the theorem can be found in the Appendix,
whereas numerical examples are reported in Fig. 2.A.2, 2.B.2
and 2.C.2.

For ease of exposition, given any time interval[tmin, tmax]
represented by a node of theUtree, we define as itspreceding
gap the maximal time interval(t̄, tmin) containing no break
instant and such that̄t ≥ told. Preceding gaps are depicted as
dotted lines in the bottom parts of Fig. 2.A.1, 2.B.1 and 2.C.1.
As highlighted by Fig. 2.C.1, there is a gap both betweentold

and any of the leftmost time intervals represented by some
node of theUtree, and between every pair of time intervals
represented by two sibling nodes.

Given the time interval represented by a generic node of the
Utree, Eq. (5) obviously holds for any time instantt1 in its
preceding gap. Suppose to know the state of the GPS server
corresponding to a time instantt1 in the preceding gap, and
let Umax, ∆Φ and ∆W be the values of the fields of the
node.W (t1, tmax) can be immediately computed through (5).
Furthermore,W (tmax) = W (t1) + W (t1, tmax), V (tmax) =
Umax and, sinceΦ(t−min) = Φ(t+1), Φ(tmax) = Φ(t+1) + ∆Φ.
Hence, through the information stored in the node, the stateof
the GPS server corresponding to the time instanttmax can be
computed atO(1) cost, independentlyof the number of break
instants in(t1, tmax].

It is worth noting that in casetmax is an expected break
instant at timetnew (tmax > tnew), the above computed state is
more precisely theexpectedstate corresponding to the expected
break instanttmax. As an example, consider Fig. 2.C.1 and
2.C.2: using the state stored in the base tuple< V (told),
Φ(t+old), W (told) >, corresponding to timetold = 23, the
values stored in the fieldsUL1

max, ∆WL1 and ∆ΦL1 of the
nodeL1 allow the state corresponding to timetL1

max = 38 to
be computed atO(1) cost.

We can now summarize the twokey featuresthat enable the
Utree to be updated and the virtual time to be computed at

8

1 // shape data structure:
2 V_old ; // V(t_old)
3 W_old ; // W(t_old)
4 Phi_old ; // Phi(t_old +)
5 Utree ; // Def. 2
6
7 function computeV(W_new) // returns V(t_new)
8 {
9 // next three temp. variab. will store V(t_l), W(t_l),
10 // Phi(t_l +) at the end of the search (Eq. (4))
11 W_s = W_old ;
12 V_s = V_old ;
13 Phi_s = Phi_old ;
14 cur = Utree.root ; // curr. search subtree
15
16 // at each search step we have:
17 // W_s [left gap] [left interval] W_L_max [right gap] [right interval]

18 while (not is_leaf(cur)) { // search W(t_l)
19 W_L_Max = W_s + (cur->left->Umax - V_s)*Phi_s -
20 cur->left->d_W; // pivot: Eq. (5)
21
22 if (W_new < W_L_Max) // => W(t_l) < W_L_Max
23 cur = cur->left ; // cont. in left subtree
24 else { // => W(t_l) >= W_L_Max
25 // update variables to the begin. of next gap
26 V_s = cur->left->Umax ;
27 W_s = W_L_Max ;
28 Phi_s = Phi_s + cur->left->d_Phi ;
29 cur = cur->right ; // cont. in right subtree
30 } // end of case W(t_l)>=W_L_Max
31 } // end of search loop
32
33 return V_s + (W_new - W_s) / Phi_s ; // Eq. (4)

34 }

Fig. 4. FunctioncomputeV.

O(log N) cost: 1) thanks to (5), the information stored in a
node representing a time interval[tmin, tmax] allow the state
of the GPS server corresponding to the time instanttmax to
be computed atO(1) cost, provided that the state of the GPS
server corresponding to a time instantt1 in the preceding gap
is known; 2) according to Def. 2 and Th. 1, the information
stored in each node depends only on its subtree.

A final remark is in order: the nodes of theUtree do represent
time instants/intervals, but they containno information on the
value of any time instant. Maintaining such information is in
general a hard task in case of variable-rate links.

B. Computing the virtual time

In this subsection we show how L-GPS computesV (tnew) at
O(log N) cost through the shape data structure, assuming that
theUtree hasO(log N) depth. First we describe the algorithm,
then we show an example of how it operates, finally we provide
a synthetic proof of its correctness.

The algorithm is implemented by the functioncomputeV,
whose pseudocode is shown in Fig. 4.computeV takes as input
W (tnew) and performs a binary search of the leaf representing
the largest break instanttl ≤ tnew. During the search three
temporary variables are used; they are updated in such a way
that they will contain the tuple< V (tl), Φ(t+l), W (tl) > at
the end of the search. Then they are used to computeV (tnew)
through (4).

In more detail, the temporary variables are initialized to
the tuple< V (told), Φ(t+old), W (told) > before beginning the
binary search (lines 11-13). Then, upon each search step, the
largest time instanttLmax represented by the left childL of
the node involved in the current search step is used aspivot.
Unfortunately, as previously said, computing break instants

in case of variable-rate links is a hard task. HencetLmax is
indirectly compared againsttnew by exploiting the following
property: since the system is work-conserving,W (t) is an
increasing function of the time, hence the ordering between
tnew andtLmax is the same as betweenW (tnew) andW (tLmax).
The last two values are the actually compared ones (line 22).

To compare it againstW (tnew), W (tLmax) is computed by
exploiting the first key feature of theUtree. Upon the first
iteration, L is the left child of the root node of theUtree,
hence there is no break instant betweentold andtLmin (Def. 2).
Therefore, through Eq. (5) the state stored in the base tupleis
used to computeW (tLmax) at O(1) cost (lines 19-20).

Consider now the right subtree of theUtree, as e.g. the
subtree rooted atR1 in Fig. 2.C.2. There is at least one break
instant betweentold and the smallest time instant represented in
this subtree. Hence, if the search continues in the right subtree
upon the second iteration, the state stored in the temporary
variables can no more be used to computeW (tLmax) at O(1)
cost through Eq. (5). On the contrary, as noted in the previous
subsection, there is a gap (a time interval containing no break
instant) between the largest time instant represented by a node
and the smallest time instant represented by its right sibling. For
this reason (and also to let them contain the state corresponding
to time tl at the end of the search), the state variables are
updated to< V (tLmax), Φ(tL +

max), W (tLmax) > (at O(1) cost)
on each search step that causes the search to continue into the
right subtree (lines 26-28). Hence, they can be used to compute
W (tLmax) at O(1) cost at any iteration.

As an example, suppose to computeV (tnew = a2
2 = 39)

(referring to Fig. 2.C.1 and 2.C.2). The temporary variables are
first initialized to the base tuple, i.e. to the state corresponding
to time23. Upon the first iteration,tLmax = tL1

max = 38 (see the
bottom part of Fig.. 2.C.1), andW (38) = 23+ (21− 17) ∗ 4−
1 = 38 is computed at lines 19-20. SinceW (tnew = 39) >

W (38), the temporary variables are updated to< UL1
max =

F 1
2 = V (38) = 21, Φ(23+)+∆ΦL1 = Φ(38+) = 2, W (38) =

38 > at lines 26-28. ThenR1 is selected for the next search
step.R1 is a leaf, hence the search loop ends, and, using the
values stored in the temporary variables,V (39) is computed as
V (38) + W (39)−W (38)

2 = 21 + 0.5 = 21.5.
Finally, to prove that the search ends up storing the tuple

< V (tl), Φ(t+l), W (tl) > in the temporary variables, consider
that: 1) tnew ≤ tC and theUtree is assumed to representall
the break instants included in(told, tC] (we show in the next
subsection how this can be accomplished); 2) the system is
causal, i.e. the evolution of the virtual time up to timetnew

does not change in consequence of new packet arrivals after
time tnew; hence all the states stored in the temporary variables
during the search areactual states; 3) each time the search
must continue in the right subtree, the temporary variablesare
updated to the state corresponding to the largest break instant
represented by the left subtree.

Since a level of theUtree is descended upon each iteration,
the search terminates after a number of iterations no largerthan
the depth of theUtree. Hence, since we assumed that theUtree

has O(log N) depth, the functioncomputeV has O(log N)
complexity.

9

1 bubble_up(P) { // update aggr. info from node P
2 while (is_not_null(P)) {
3 P->Umax = P->right->Umax ;
4 P->d_Phi = P->left->d_Phi + P->right->d_Phi ;
5 P->d_W = P->left->d_W + P->right->d_W -
6 (P->right->Umax - P->left->Umax)*P->left->d_Phi;
7 P = P->father ; // move up one level
8 }
9 }
10
11 // adds/updates a breakpoint; in: break value U, weight
12 // sum variation d_Phi, current virt. time curr_V
13 function add_break_point(U, d_Phi, curr_V) {
14 if (is_empty(Utree)) { // init base tuple
15 V_old = curr_V ; // current value of V(t)
16 W_old = curr_W ; // current value of W(t)
17 Phi_old = curr_Phi ; // current value of Phi(t)
18 }
19 // next function returns the newly
20 // created or just updated leaf
21 leaf = bal_tree_insert(Utree, U, d_Phi) ;
22 bubble_up(leaf->father) ; // update aggr. info
23 bal_tree_ins_fixup(leaf->father) ; // rebal. tree
24
25 if (Utree.leftmost_leaf->U <= curr_V) // stale brk
26 rem_break_point(Utree.leftmost_leaf,
27 Utree.leftmost_leaf->d_Phi) ;
28 return leaf ;
29 }
30
31 // updates/removes a breakpoint
32 rem_break_point(leaf, d_Phi) { // in: leaf to work on
33 if (leaf == Utree.leftmost_leaf and
34 d_Phi == leaf->d_Phi) {
35 // Removing leftmost leaf, update base tuple:
36 W_old += Phi_old * (leaf->Umax - V_old) // Eq. (5)
37 Phi_old = Phi_old + leaf->d_Phi ;
38 V_old = leaf->Umax ;
39 }
40 // next func. updates or removes the leaf and replaces
41 // leaf->father with the brother of the leaf
42 brother = bal_tree_remove(Utree, leaf, d_Phi) ;
43 bubble_up(brother->father) ; // update aggr. info
44 bal_tree_rem_fixup(brother) ; // re-balance tree

45 }

Fig. 5. Functionsadd_break_point, rem_break_point
andbubble_up.

C. Updating the shape data structure

In this subsection we show how, by exploiting the second
key feature of theUtree and assuming theUtree to be bal-
anced, the shape data structure can be updated on each packet
arrival at O(log N) cost. Especially, we show how nodes are
automatically removed atO(log N) cost, and in such a way
that theUtree never contains more thanN leaves. We show
how balancing can be guaranteed by implementing theUtree

as an augmented balanced tree in the next section.
The shape data structure can be updated through two

functions,add_break_point andrem_break_point, both
shown in Fig. 5.add_break_point takes as input the break
valueU of the breakpoint to add, the variationd_Phi of Φ(t)
on the breakpoint, and the current value of the virtual time.

When the arrival of a packet causes a flow to become
backlogged at timet, add_break_point must be invoked
twice, to add both the (actual) breakpoint corresponding to
the flow becoming backlogged, and the expected breakpoint
corresponding to the expected break instant at which the flow
becomes idle if no packet arrives after timet. On the first
invocation, the virtual start time of the just arrived packet and
the weight of the flow must be assigned, respectively, toU
and d_Phi (Φ(t) increases by the weight of the flow on the
breakpoint); on the second invocation, the virtual unbacking

time of the flow (equal to the virtual finish time of the packet)
and the opposite of the weight of the flow must be assigned,
respectively, toU andd_Phi.

On the contrary, if the packet causes the virtual unback-
ing time of an already backlogged flow to move forward,
rem_break_point (described later) must be called to remove
the old breakpoint, thenadd_break_point must be called to
insert the new one.

Invoking add_break_point and rem_break_point as
above shown guarantees theUtree to represent, at any time
instant t, all the (actual and expected) break instants larger
than told and due to the packets arrived up to timet.
add_break_point calls the function

bal_tree_insert, which descends the tree looking
for a leaf containing the break valueU. On success,
bal_tree_insert adds d_Phi to the value stored in the
field ∆Φ of the leaf (a further flow becomes idle/backlogged
upon the break instant represented by the leaf); otherwise it
creates both a new leaf containing the tuple< U, d_Phi, 0 >,
and an internal node whose children are the newly created leaf
and the last leaf visited during the search; hence it replaces
the last leaf visited during the search with the newly created
internal node.

It is worth noting thatbal_tree_insert guarantees that
each internal node of theUtree has exactly two children (an
internal node with just one child would represent the same time
interval represented by its child).
bal_tree_insert does not deal with the aggregate infor-

mation stored in the nodes, which are instead updated by the
functionbubble_up (lines 1-9). All the information stored in
an internal node of theUtree depend only on the information
stored in the subtree rooted at that node (second key featureof
theUtree). Hence, if the information stored in a node changes,
only its ancestorsmust be updated. Therefore,bubble_up
updates only the nodes along the path from the input node to
the root of theUtree. The expressions used to updateUmax,
∆Φ and∆W come from Def. 2 and Th. 1.

In order to preserve balancing, some types of balanced
trees need afix up after the insertion (removal) of a node.
This is accomplished by the functionbal_tree_ins_fixup
(bal_tree_rem_fixup), whose code – as the one of
bal_tree_insert – depends on the specific underlying
balanced tree and is described in the next section.

It is easy to understand that the computational complexity of
the functionsbal_tree_insert and bubble_up is O(d),
whered is the depth of theUtree. The complexity of the fix
up functions shown in the next section isO(d) as well.

After inserting a new leaf and updating the aggregate in-
formation, add_break_point checks whether the leftmost
leaf of the Utree represents astale breakpoint (i.e. a break-
point whose corresponding break value is no greater than
the current value of the virtual time). If this is the case,
add_break_point invokesrem_break_point to remove
the leaf and to consistently update the base tuple.

Hence, on the one handadd_break_point does not in-
crease the depth of theUtree in case the removal of a stale
breakpoint can be performed. On the other hand, when such
a removal can not be performed, there is actually no stale

10

breakpoint in theUtree. In this case, theUtree contains only
expected breakpoints, due to flows becoming idle. But a flow
whose state changes only once during a given time interval
causes only one breakpoint during the time interval. Therefore,
when theUtree does not contain any stale breakpoint, it is
representing a time interval that contains at most one break
instant per flow.

As a conclusion, since there areN flows in the system and
the Utree is balanced, it is easy to prove that the depth of the
Utree never exceedsO(log N), andadd_break_point has
O(log N) complexity.

The same considerations about balancing issues made for
add_break_point, apply also to rem_breakpoint
(which is briefly commented in Fig. 5 too). In
particular, rem_break_point invokes the function
bal_tree_remove, which subtracts the value of the
input argumentd_Phi to the value stored in the field∆Φ
of the leaf pointed by the input argumentleaf. If this value
becomes equal to zero,bal_tree_remove does remove the
leaf, and replaces the father node of the just removed leaf with
the other child (recall thatbal_tree_insert guarantees
each internal node to always have two children).

V. BALANCED TREES

The actual computational cost of L-GPS depends on the
depth of the augmented balanced tree used to implement the
Utree. In the following two subsections we show two classes
of balanced trees suitable for implementing theUtree: Patricia
Trees [16], that guarantee balancing from a statistical point
of view, and Red-black Trees [17], that guarantee deterministic
balancing. We also show that Patricia Trees do not need any re-
balancing after insertions/extractions, and that they allow entire
subtrees to be removed inO(1) steps, which further improves
the performance of L-GPS.

The reader interested into numerical issues (as e.g. timestamp
wraparound) is referred to Subsec. 5.3 in [22].

A. Statistical balancing: Patricia Trees

Instead of the ordering between labels, a search tree can
be organized as a function of the label representations as a
sequence of digits. This is the main idea behindtries [16],
a well known (and very studied) technique for storing and
retrieving data. A common method to decrease the number of
nodes in a trie is using apath compressionmethod, known
as Patricia compression [16]. A binary Digital Patricia Tree
– hereafter calledDTree for short – containingN values is
a binary tree in which each leaf is labeled with the binary
representation of each value (there is one leaf per value),
whereas each internal node is labeled with the commonprefix
of the labels of all the leaves stored in the subtree rooted atthe
node.

The Utree can be implemented as an augmented DTree in
which each leaf is labeled with the binary representation of
the break value it contains, and each internal node is labeled
with the common prefix of all the break values stored in its
subtree. If we imagine to add such a prefix to each internal
node, then Fig. 2.A.2, 2.B.2 and 2.C.2 turn out to show three
Utree implemented as augmented DTrees.

The form of a DTree depends only on the values it contains,
and it is independent of the order in which values are inserted.
If M is the number of binary digits used to represent the
values stored in a DTree, the maximum depth of the DTree
is equal toM . However, the average depth of a DTree has the
following interesting property. Consider a DTree containing N

independent random values from a distribution with any density
functionf(x) such that

∫

f2(x)dx < ∞: the expectedaverage
depth of such a DTree isO(log N) [16], [18].

Finally, in our simulations (Sec. VII), even themea-
sured maximumdepth of a DTree-basedUtree resulted to be
O(log N) with small constants (within a factor2 with respect
to the maximum depth of a perfectly balanced tree).

Thus, bal_tree_insert and bal_tree_remove have
O(log N) complexity in practical cases, and they are quite
efficient, because each elementary step is based on sim-
ple bit-comparisons. Finally,bal_tree_ins_fixup and
bal_tree_rem_fixup are obviously empty functions.

DTrees allow a further optimization. Let nodeL be the root
of a subtree to remove, nodeP be the father of nodeL, and
nodeR be the other child of nodeP . If nodeR was the only
child of nodeP , the labels and the aggregate information stored
in both nodes would coincide. Hence, the removal of the subtree
rooted at nodeL can be achieved by simply substituting nodeR

in place of nodeP (suppose e.g. to remove the subtree rooted
at L1 in Fig. 2.C.2: the content of nodeP0 will just coincide
with the one of its right childR1). Each node of the subtree
rooted at nodeL can be easily recycled by inserting nodeL in
a list of free trees, i.e. a list whose elements are root nodes of
trees removed from theUtree. Whenever a new node must be
added to theUtree and the list is not empty, the node can be
recycled from the headZ of the list. If nodeZ has children,
they are inserted as the first and the second element of the list.
Hence insertions into and extractions from the list haveO(1)
cost.

Consider the functioncomputeV: if the left subtree of the
node involved in the current search step is removed from the
Utree each time the binary search continues in the right subtree,
then all the stale breakpoints are pruned from theUtree each
time the new value of the virtual time is computed (aggregate
information can be easily updated at the end of the search by
invoking bubble_up and passing to it the last node visited).

B. Deterministic balancing: Red-black Trees

Red-black Trees [17] are balanced search trees based on
comparisons between keys. Each node is labeled with one
of the K values contained in the tree; furthermore, all the
labels in the subtree rooted at the left/right child of a nodeare
smaller/larger than the label of the node. Two special fix up (re-
balancing) functions, invoked, respectively, after each insertion
and extraction, guarantee the maximum depth of a Red-black
Tree containingK nodes to be equal tod2 · log2(K + 1)e [17].
Furthermore, fix up operations have logarithmic complexity
with small constants [17].

The Utree can be implemented as an augmented Red-black
Tree in which each leaf is labeled with the break value it
contains, and each internal node is labeled with the maximum
break value stored in the leaves of its left subtree. Since a binary

11

α
β

x

γ
y

βα
x γ

P

y

Left−Rotate(x)

Right−Rotate(y)
P

Fig. 6. The rotation operations performed by the fix up functions
in a Red-black Tree. The lettersα, β and γ represent arbitrary
subtrees.

tree withN leaves has2 · N − 1 nodes, the worst-case depth
guaranteed by the underlying Red-black Tree for theUtree is
equal tod2 · (1 + log2 N)e.
bal_tree_ins_fixup andbal_tree_rem_fixup can

be obtained with minor modifications from the fix up func-
tions shown at pages 268 and 274 of [17]. The only critical
operations performed by these functions are the tworotations
shown in Fig. 6: each rotation does not affect the aggregate
information stored in the parent nodeP and in the root nodes
of the subtreesα, β andγ. Hence the original functions need
to be modified so as to apply the inner part of thewhile loop
in bubble_up (Fig. 5, lines 3-6) only to the nodesx and y

after each rotation.
It is worth noting that both nodesx andy are assumed to be

internal nodes in a rotation [17], hence the leaves of theUtree

can never (erroneously) become internal nodes.

VI. L-WF2Q

In this section we describe L-WF2Q, an implementation of
WF2Q with O(log N) complexity and small constants.

In addition to using L-GPS to compute the virtual time, L-
WF2Q exploits the following property to further reduce the
computational cost. Assume that flow timestamps are immedi-
ately updated each time a new packet is enqueued or dequeued
(i.e. as it starts to be served). It follows that the quantity
|V (t) − Si(t)| is upper bounded by the maximum difference
between thenormalizedamount of service delivered to thei-
th flow by, respectively, the GPS server and the real system.
Furthermore, as shown in Sec. II, the maximum deviation of
WF2Q with respect to the GPS service is equal toLmax. Hence,

|V (t) − Si(t)| ≤
Lmax

φi
∀i, ∀t (7)

known as the Globally Bounded Timestamp (GBT) property
[19]. As a consequence,

Ui(t) − Si(t) >
Lmax

φi
⇒ Ui(t) > V (t) ∀i, ∀t

In the end,Ui(tnew) can constitute an actual break value at
time tnew only if Ui(tnew) − Si(tnew) ≤ Lmax

φi
. We define as

near the virtual unbacking times that meet this condition. It
is easy to understand that the virtual time can be computed
considering only near virtual unbacking times. Therefore,the
virtual unbacking times to insert into theUtree can be properly
filtered, thus reducing the depth of theUtree. The effectiveness
of this optimization during congestion periods is shown in the
next section through simulations.

The pseudocode for L-WF2Q is shown in Fig. 7. Both the
functions enqueue and dequeue can be divided into two
parts: the first part (enqueue lines 3-12,dequeue lines 32-

1 enqueue(pkt) // invoked when a new pkt arrives
2 {
3 V = computeV(curr_W) ;
4 f = find_flow(pkt) ; // find the flow owning pkt
5 pkt.S = max(V, f.U) ; // Eq. 3
6 pkt.F = pkt.S + pkt.L/f.phi ; // Eq. 3
7 tail_insert(f, pkt) ; // ins. pkt into f queue
8 if (queue_head(f) == pkt) { // flow f was idle
9 // update flow timestamps
10 f.S = pkt.S ;
11 f.F = pkt.F ;
12 }
13 f.U = pkt.F ; // update flow unback. virt. time
14 if (f.U <= f.S + Lmax/f.phi) { // f.U is (still) near
15 if (not_in_Utree(f.Uleaf) or f.Uleaf->Umax < V) {
16 // flow f is not present in the Utree, or its
17 // previous unbacking vtime was overcome by V
18 add_break_point(f.S, f.phi, V) ;
19 f.Uleaf = add_break_point(f.U, -f.phi, V) ;
20 }
21 else { // move forward f.U
22 rem_break_point(f.Uleaf, f.phi) ;
23 f.Uleaf = add_break_point(f.U, -f.phi, V) ;
24 }
25 } // end of branch for near f.U
26 else if (in_Utree(f.Uleaf)) // f.U is no more near,
27 rem_break_point(f.Uleaf, f.phi) ; // rem. from Utree
28 }
29
30 packet dequeue() // invoked when the link is available
31 {
32 pkt = schedule_next() ; // Def. 1
33 f = find_flow(pkt) ; // find the flow owning pkt
34 head_remove(f) ; // rem. pkt at the head of f queue
35 if (not is_empty(f)) { // update flow timestamps
36 f.S = head(f).S ; // may cause f.U could become near
37 f.F = head(f).F ;
38 if (not_in_Utree(f.Uleaf) and f.U <= f.S + Lmax/f.phi)
39 f.Uleaf = add_break_point(f.U, -f.phi, V) ;
40 }
41 return pkt ;

42 }

Fig. 7. L-WF2Q.

37) is a vanilla implementation of the packet timestamping
and selection policy of WF2Q [3] (Eq. 3 and Def. 1), whereas
the second part (enqueue lines 13-27,dequeue lines 38-
39) deals with the shape data structure and implements the
previously defined filtering of the unbacking virtual times
(enqueue line 14,dequeue line 38).

The functionschedule_next (line 32) returns the next
packet to transmit among the eligible ones. In [4] it is shown
how to perform this operation withO(log N) complexity, using
a special augmented balanced binary search tree. In such a tree
each node represents a backlogged flow, and contains the flow
virtual start and finish times. In addition, each node contains as
aggregated information the minimum virtual finish time among
the ones stored in the nodes of its subtree. As suggested in [4],
balancing can be guaranteed by using e.g. a Red-black Tree
as underlying balanced tree. In the end, the resulting tree is
similar to theUtree, and keeping it up to date involves similar
operations.

VII. S IMULATION RESULTS

As shown in Subsec. V-A, DTrees are very simple to handle,
and allow all the stale breakpoints to be efficiently removed
from theUtree upon each update of the system virtual time. But,
although the expected average depth of a DTree isO(log N),
its worst-case depth isO(M), whereM is the number of bits in
the labels of the nodes. Hence, to assess the actual performance
of a DTree in practical cases, we simulate the operation of L-

12

A B

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50
[sec]

backlogged flows
near virt. unback. times

DTree depth

 1

 10

 100

 1000

 0 100 200 300 400 500 600
[sec]

backlogged flows
near virt. unback. times

DTree depth

Fig. 8. System evolution in case of: A) generic scenario with
offered load greater than the link capacity, B) Scenario 4.

WF2Q when theUtree is implemented with a DTree and only
near virtual unbacking times are inserted in theUtree. Finally,
we compare the achieved performance with the one that would
have been guaranteed by an ideal perfectly balanced tree and
by a Red-Black Tree.

We use thens-2 network simulator [23]. The environment
consists of a node with a 10 Mbps output link. We simulate
the following 4 scenarios for 10 minutes each:

1) 1000 simultaneous FTP transfers.
2) 755 (asynchronous) Constant Bit Rate (CBR) traffic

sources with packet length distribution equal to the one ex-
perienced in an Internet router according to [24]. Sources were
divided into five (rate, weight) groups, ranging from (10 Kbps,
1) to (50 Kbps, 5), increasing in steps of (10 Kbps, 1).

3) 820 VoIP traffic sources, using CISCO [25] codec G.723
(30 bytes payload, 22 packets per sec, 40 bytes IP/UDP/RTP
header).

4) A mix of the previous traffic sources: 20 FTP sources, 400
asynchronous 10Kbps CBR sources, 350 VoIP sources, plus 20
Video sources (MPEG-4 coding) transmitting real video traffic
traces taken from [26].

During each simulation we takesnapshotsof the state of the
system – number of backlogged flows, number ofnear virtual
unbacking times and depth of theUtree – at time intervals with
length uniformly distributed between 1 and 2 seconds.

In a preliminary simulation run we found that the number
of backlogged flows and, hence, the frequency of breakpoints
is very low if the offered load is ’too’ lower than the link
capacity (a5% lower offered load is enough to get a very
low frequency of breakpoints). On the contrary, if the offered
load is equal to or higher than the link capacity, the number
of backlogged flows is high, but the number of breakpoints
stored in theUtree is limited by the filtering of thenear virtual
unbacking time. Especially, the more the backlog increases,
the more the filtering becomes effective: Fig. 8.A shows this
phenomenon in case the offered load is20% larger than the
link capacity.

As a consequence, for each of the above scenarios (except for
scenario 1), the number of sources and the rate of each source
come from a fine tuning aimed at achieving the maximum
frequency of breakpoints. Fig. 8.B shows the evolution of the

Scen. Flows Mean
DTree

99%
Conf.

Max
DTree

Max
Bal.

Ratio Max
RB

1 1000 0 0 0 0 - 0
2 755 14.62 0.02 17 11 1.55 21
3 820 14.84 0.10 17 11 1.55 22
4 790 16.47 0.06 20 11 1.82 22

TABLE II
STATISTICS COLLECTED FOR EACH SCENARIO

system in case of Scenario 4 (qualitatively similar to the ones
for scenarios 2 and 3). Apart from a short initial transitory
period, the number of near virtual unbacking times recordedin
each snapshot is roughly equal to the total number of flows.

To compute statistics on the depth of theUtree, each simu-
lation is repeated10 times and, for each simulation, only the
steady time interval is considered (e.g.[100, 600] in Fig. 8.B).

Table II summarizes our results: for each scenario, each
column reports, respectively, the number of competing flows,
the mean depth of theUtree; the semi-width of the 99%
confidence interval upon this value; the maximum depth of the
Utree (the maximum among the depths of theUtree recorded in
each snapshot), the depth of a perfectly balanced tree containing
Nmax leaves (1+ dlog2 Nmaxe), whereNmax is the maximum
among the number of near virtual unbacking times recorded
in each snapshot; the ratio between the maximum depth of
the Utree (column 5) and the maximum depth of the perfectly
balanced tree (previous column); the worst-case depth of a
Red-black Tree withNmax leaves (d2 · (1+ log2 Nmax)e,
Subsec. V-B).

Whereas the null depth of any tree for scenario 1 is a
consequence of the filtering of virtual unbacking times, in all
the other cases the mean depth and the (sample) maximum
depth of theUtree is within a factor 2 with respect to the
maximum depth of a perfectly balanced tree.

VIII. C ONCLUSIONS

In this paper we have shown L-GPS, a new algorithm for
performing exact GPS simulation, and L-WF2Q, an efficient
implementation of WF2Q based on L-GPS. Both algorithms
haveO(log N) complexity per packet transmission, and comply
with constant-rate as well as variable-rate links.

To the best of our knowledge, L-WF2Q is the first scheduler
achieving theoptimumservice (i.e. theminimumdeviation with
respect to the GPS service) atO(log N) cost. Furthermore,
analytical results and simulations demonstrate that the com-
putational complexity of both L-GPS and L-WF2Q has small
constants too.

L-GPS and L-WF2Q reduce theupperbound complexity for
simulating a GPS server and theupper bound complexity for
providing theoptimumservice, both fromO(N) to O(log N).
Moreover, since the complexity lower bound to guarantee the
minimum deviation with respect to the GPS service isΩ(log N)
[13], L-WF2Q achieves theoptimum service with optimum
complexity.

IX. A CKNOWLEDGMENTS

I wish to thank Ming-I Hsieh for his important fixes to
the pseudocode of both L-GPS and L-WF2Q. I would like to

13

thank also Giovanni Stea and Martin Karsten for their helpful
suggestions. Finally, I whish to thank the anonymous referees,
whose valuable comments helped to improve the quality of this
paper.

REFERENCES

[1] A. Parekh and R. G. Gallager, "A generalized processor
sharing approach to flow control - the single node case", in
Proceedings of INFOCOM ’92, 1992.

[2] D. Stiliadis and A.Varma, "Rate-proportional servers:A gen-
eral methodology for fair queueing algorithms",IEEE/ACM
Transactions on networking, 1996.

[3] References J. C. R. Bennett e H.Zhang, "WF2Q: Worst-
case fair weighted fair queueing", inProceedings of IEEE
INFOCOM ’96, 1996.

[4] I. Stoica, H. Abdel-Wahab. “Earliest Eligible Virtual Deadline
First: A Flexible and Accurate Mechanism for Proportional
Share Resource Allocation”, inTechnical Report 95-22, De-
partment of Computer Science, Old Dominion University,
November 1995.

[5] J. C. R. Bennett e H.Zhang, "Hierarchical packet fair queue-
ing algorithms", inProceedings of ACM SIGMETRICS ’96,
1996.

[6] D. Stiliadis and A. Varma, “Efficient Fair Queueing Al-
gorithms for Packet Switched Networks," inIEEE/ACM
Transactions on Networking, 1998.

[7] D. Stiliadis and A. Varma, “A general methodology for
designing efficient traffic scheduling and shaping algorithms",
in IEEE INFOCOM’97, 1997.

[8] S. Suri, G. Varghese and G. Chandramenon, "Leap Forward
Virtual Clock: A New Fair Queuing Scheme with Guaranteed
Delays and Throughput Fairness", inProceedings of IEEE
INFOCOM’97, 1997.

[9] S. Golestani. “A self-clocked fair queueing scheme for broad-
band applications”, inProceedings of IEEE INFOCOM’94,
1994.

[10] P. Goyal, H.M. Vin, and H. Chen. "Start-time Fair Queueing:
A scheduling algorithm for integrated services." InProceed-
ings of the SIGCOMM 96, 1996.

[11] M. Shreedhar and G. Varghese. “Efficient fair queueing using
deficit round robin”, inProceedings of SIGCOMM’95, 1995.

[12] C. Waldspurger. “Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management”, PhD thesis,
Massachusetts Inst. of Technology, 1995.

[13] J. Xu and R. J. Lipton. "On Fundamental Tradeoffs between
Delay Bounds and Computational Complexity in Packet
Scheduling Algorithms", inProceedings of ACM SIGCOMM
’02, 2002.

[14] A. G. Greenberg and N. Madras, “How Fair is Fair Queue-
ing?”, Journal of the Association for Computing Machinery
39, 1992.

[15] Qi Zhao, Jun Xu, “On the Computational Complexity of
Maintaining GPS Clock in Packet Scheduling”, inProceed-
ings of IEEE INFOCOM’04, 2004.

[16] D. E. Knuth. The Art of Computer Programming, Vol. 3:
Sorting and Searching. Addison-Wesley, 1973.

[17] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.Introduction
to algorithms. The MIT Press, 1991.

[18] L. Devroye. “A note on the average depth of tries”, in
Computing, 28:367-371, 1982.

[19] D.C. Stephens, J.C. Bennett and H. Zhang, “Implementing
scheduling algorithms in high-speed networks” inIEEE JSAC
Special Issue on High Performance Switches/Routers, 1999.

[20] V. Firoiu, J. Le Boudec, D. Towsley, Z. Zhang. “Advancesin
Internet Quality of Service”, Technical report DSC200149,
EPFL-DI-ICA, October 2001.

[21] A. Kortebi, L. Muscariello, S. Oueslati and J. Roberts,
“Evaluating the Number of Active Flows in a Scheduler
Realizing Fair Statistical Bandwidth Sharing”, inProceedings
of SIGMETRICS’05, 2005.

[22] P. Valente, “Exact GPS simulation with logarithmic complex-
ity, and its application to an optimally fair scheduler”, in
Proceedings of SIGCOMM’04, 2004.

[23] <www.isi.edu/nsnam/ns/>.
[24] <advanced.comms.agilent.com/insight/2001-

08/Questions/traffic_gen.htm>.
[25] <www.cisco.com>.
[26] <www-tkn.ee.tu-berlin.de/research/trace/trace.html>.

APPENDIX

Proof of Theorem 1:We proceed by induction. Consider a
nodeP of the Utree and lettL

max
and tR

max
be the largest time

instants represented, respectively, by the subtree rootedat the
left child L, and by the subtree rooted at the right childR of
the nodeP at time tnew. PossiblytR

max
, or both tL

max
and tR

max

are expected break instants at timetnew.
Let t1 be a time instant such that there is no break instant be-

tweent1 and the smallest break instanttP

min
= tL

min
represented

by the subtree rooted atP , and consider the total amount of
serviceW (t1, tP

max
) that the system is expected to deliver while

the virtual time grows fromV (t1) to V (tP

max
) = UP

max
= UR

max
if

no packet arrives after timetnew (Fig. 3). We can write:

W (t1, tP

max
) = W (t1, tL

max
) + W (tL

max
, tR

max
) (8)

For the base case suppose that both nodesL andR are leaves:
according to (2), (8) becomes

W (t1, tP

max
) = Φ(t+

1
) · (UL

max
− V (t1)) + Φ(tL +

max
) · (UR

max
− UL

max
) (9)

According to Def. 2, we have

Φ(tL +

max
) = Φ(tL−

max
) + ∆ΦL = Φ(t+

1
) + ∆ΦL (10)

which, substituted in (9), gives

W (t1, tP

max
) = Φ(t+

1
) · (UR

max
− V (t1)) +

−[−∆ΦL
· (UR

max
− UL

max
)]

For the inductive step, suppose thatP is a generic internal
node, and that Eq. (6) holds for both its children. Since there
is no break instant betweentL

max
and tR

min
, and considering (5)

and (10)
{

W (t1, tL

max
) = Φ(t+

1
) · (UL

max
− V (t1)) − ∆W L

W (tL

max
, tR

max
) = (Φ(t+

1
) + ∆ΦL) · (UR

max
− UL

max
) − ∆W R

Substituting the above expressions in (8), we get

W (t1, tP

max
) = Φ(t+

1
) · (UR

max
− V (t1)) +

−[∆W L + ∆W R
− ∆ΦL

· (UR

max
− UL

max
)]

Paolo Valente Paolo Valente received the
Laurea and the PhD degree in Computer
Systems Engineering from the University of
Pisa, Italy, in 2000 and 2004 respectively.

Starting from 2006, he is an Assistant
professor (Ricercatore) at the Department of
Computer Science of the University of Mod-
ena, Italy. His current research focus is the
design and analysis of resource scheduling
algorithms.

He was and is involved in national and European research
projects.

